Code for quiz 5. More practice with dyplr functions.
drug_cos.csv
into R and assign it to drug_cos
drug_cos <- read_csv("https://estanny.com/static/week5/drug_cos.csv")
glimpse()
to get a glimpse of your data.glimpse(drug_cos)
Rows: 104
Columns: 9
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "Z...
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Z...
$ location <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "N...
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0....
$ grossmargin <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0....
$ netmargin <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0....
$ ros <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0....
$ roe <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0....
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 20...
distinct()
to subset distinct rows.drug_cos %>%
distinct(year)
# A tibble: 8 x 1
year
<dbl>
1 2011
2 2012
3 2013
4 2014
5 2015
6 2016
7 2017
8 2018
count()
to count observations by group.drug_cos %>%
count(year)
# A tibble: 8 x 2
year n
* <dbl> <int>
1 2011 13
2 2012 13
3 2013 13
4 2014 13
5 2015 13
6 2016 13
7 2017 13
8 2018 13
drug_cos %>%
count(name)
# A tibble: 13 x 2
name n
* <chr> <int>
1 AbbVie Inc 8
2 Allergan plc 8
3 Amgen Inc 8
4 Biogen Inc 8
5 Bristol Myers Squibb Co 8
6 ELI LILLY & Co 8
7 Gilead Sciences Inc 8
8 Johnson & Johnson 8
9 Merck & Co Inc 8
10 Mylan NV 8
11 PERRIGO Co plc 8
12 Pfizer Inc 8
13 Zoetis Inc 8
drug_cos %>%
count(ticker, name)
# A tibble: 13 x 3
ticker name n
<chr> <chr> <int>
1 ABBV AbbVie Inc 8
2 AGN Allergan plc 8
3 AMGN Amgen Inc 8
4 BIIB Biogen Inc 8
5 BMY Bristol Myers Squibb Co 8
6 GILD Gilead Sciences Inc 8
7 JNJ Johnson & Johnson 8
8 LLY ELI LILLY & Co 8
9 MRK Merck & Co Inc 8
10 MYL Mylan NV 8
11 PFE Pfizer Inc 8
12 PRGO PERRIGO Co plc 8
13 ZTS Zoetis Inc 8
##Use filter()
to extract rows that meet criteria.
# A tibble: 26 x 9
ticker name location ebitdamargin grossmargin netmargin ros
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 ZTS Zoet~ New Jer~ 0.222 0.634 0.111 0.176
2 ZTS Zoet~ New Jer~ 0.379 0.672 0.245 0.326
3 PRGO PERR~ Ireland 0.236 0.362 0.125 0.19
4 PRGO PERR~ Ireland 0.178 0.387 0.028 0.088
5 PFE Pfiz~ New Yor~ 0.634 0.814 0.427 0.51
6 PFE Pfiz~ New Yor~ 0.34 0.79 0.208 0.221
7 MYL Myla~ United ~ 0.228 0.44 0.09 0.153
8 MYL Myla~ United ~ 0.258 0.35 0.031 0.074
9 MRK Merc~ New Jer~ 0.282 0.615 0.1 0.123
10 MRK Merc~ New Jer~ 0.313 0.681 0.147 0.206
# ... with 16 more rows, and 2 more variables: roe <dbl>, year <dbl>
# A tibble: 52 x 9
ticker name location ebitdamargin grossmargin netmargin ros
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 ZTS Zoet~ New Jer~ 0.217 0.64 0.101 0.171
2 ZTS Zoet~ New Jer~ 0.238 0.641 0.122 0.195
3 ZTS Zoet~ New Jer~ 0.335 0.659 0.168 0.286
4 ZTS Zoet~ New Jer~ 0.379 0.672 0.245 0.326
5 PRGO PERR~ Ireland 0.226 0.345 0.127 0.183
6 PRGO PERR~ Ireland 0.157 0.371 0.059 0.104
7 PRGO PERR~ Ireland -0.791 0.389 -0.76 -0.877
8 PRGO PERR~ Ireland 0.178 0.387 0.028 0.088
9 PFE Pfiz~ New Yor~ 0.447 0.82 0.267 0.307
10 PFE Pfiz~ New Yor~ 0.359 0.807 0.184 0.247
# ... with 42 more rows, and 2 more variables: roe <dbl>, year <dbl>
# A tibble: 16 x 9
ticker name location ebitdamargin grossmargin netmargin ros
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 PFE Pfiz~ New Yor~ 0.371 0.795 0.164 0.223
2 PFE Pfiz~ New Yor~ 0.447 0.82 0.267 0.307
3 PFE Pfiz~ New Yor~ 0.634 0.814 0.427 0.51
4 PFE Pfiz~ New Yor~ 0.359 0.807 0.184 0.247
5 PFE Pfiz~ New Yor~ 0.289 0.803 0.142 0.183
6 PFE Pfiz~ New Yor~ 0.267 0.767 0.137 0.158
7 PFE Pfiz~ New Yor~ 0.353 0.786 0.406 0.233
8 PFE Pfiz~ New Yor~ 0.34 0.79 0.208 0.221
9 MYL Myla~ United ~ 0.245 0.418 0.088 0.161
10 MYL Myla~ United ~ 0.244 0.428 0.094 0.163
11 MYL Myla~ United ~ 0.228 0.44 0.09 0.153
12 MYL Myla~ United ~ 0.242 0.457 0.12 0.169
13 MYL Myla~ United ~ 0.243 0.447 0.09 0.133
14 MYL Myla~ United ~ 0.19 0.424 0.043 0.052
15 MYL Myla~ United ~ 0.272 0.402 0.058 0.121
16 MYL Myla~ United ~ 0.258 0.35 0.031 0.074
# ... with 2 more variables: roe <dbl>, year <dbl>
select()
to select, rename, and reorder the columns.ticker
, name
and ros
drug_cos %>%
select(ticker, name, ros)
# A tibble: 104 x 3
ticker name ros
<chr> <chr> <dbl>
1 ZTS Zoetis Inc 0.101
2 ZTS Zoetis Inc 0.171
3 ZTS Zoetis Inc 0.176
4 ZTS Zoetis Inc 0.195
5 ZTS Zoetis Inc 0.14
6 ZTS Zoetis Inc 0.286
7 ZTS Zoetis Inc 0.321
8 ZTS Zoetis Inc 0.326
9 PRGO PERRIGO Co plc 0.178
10 PRGO PERRIGO Co plc 0.183
# ... with 94 more rows
select()
to exclude columns ticker
, name
, and ros
.drug_cos %>%
select(-ticker,-name, -ros)
# A tibble: 104 x 6
location ebitdamargin grossmargin netmargin roe year
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 New Jersey; U.S.A 0.149 0.61 0.058 0.069 2011
2 New Jersey; U.S.A 0.217 0.64 0.101 0.113 2012
3 New Jersey; U.S.A 0.222 0.634 0.111 0.612 2013
4 New Jersey; U.S.A 0.238 0.641 0.122 0.465 2014
5 New Jersey; U.S.A 0.182 0.635 0.071 0.285 2015
6 New Jersey; U.S.A 0.335 0.659 0.168 0.587 2016
7 New Jersey; U.S.A 0.366 0.666 0.163 0.488 2017
8 New Jersey; U.S.A 0.379 0.672 0.245 0.694 2018
9 Ireland 0.216 0.343 0.123 0.248 2011
10 Ireland 0.226 0.345 0.127 0.236 2012
# ... with 94 more rows
select()
start with drug_cos
THEN
change the name of location
to headquarter
put the columns in this order: year
, ticker
, headquarter
, netmargin
and roe
drug_cos %>%
select(year, ticker, headquarter= location, netmargin, roe)
# A tibble: 104 x 5
year ticker headquarter netmargin roe
<dbl> <chr> <chr> <dbl> <dbl>
1 2011 ZTS New Jersey; U.S.A 0.058 0.069
2 2012 ZTS New Jersey; U.S.A 0.101 0.113
3 2013 ZTS New Jersey; U.S.A 0.111 0.612
4 2014 ZTS New Jersey; U.S.A 0.122 0.465
5 2015 ZTS New Jersey; U.S.A 0.071 0.285
6 2016 ZTS New Jersey; U.S.A 0.168 0.587
7 2017 ZTS New Jersey; U.S.A 0.163 0.488
8 2018 ZTS New Jersey; U.S.A 0.245 0.694
9 2011 PRGO Ireland 0.123 0.248
10 2012 PRGO Ireland 0.127 0.236
# ... with 94 more rows
Use inputs from your quiz question filter and select and replace SEE QUIZ with inputs from your quiz and replace ??? in the code
drug_cos
THENAMGN
, AGN
, PFE
THENticker
, year
and ros
# A tibble: 24 x 3
ticker year ros
<chr> <dbl> <dbl>
1 PFE 2011 0.223
2 PFE 2012 0.307
3 PFE 2013 0.51
4 PFE 2014 0.247
5 PFE 2015 0.183
6 PFE 2016 0.158
7 PFE 2017 0.233
8 PFE 2018 0.221
9 AMGN 2011 0.305
10 AMGN 2012 0.351
# ... with 14 more rows
drug_cos
THENAMGN
and BMY
ticker
, netmargin
and roe
to return_on_equity
drug_cos %>%
filter(ticker %in% c("AMGN", "BMY")) %>%
select(ticker, netmargin, return_on_equity= roe)
# A tibble: 16 x 3
ticker netmargin return_on_equity
<chr> <dbl> <dbl>
1 BMY 0.175 0.229
2 BMY 0.111 0.131
3 BMY 0.156 0.177
4 BMY 0.126 0.132
5 BMY 0.095 0.104
6 BMY 0.229 0.292
7 BMY 0.048 0.072
8 BMY 0.218 0.373
9 AMGN 0.236 0.158
10 AMGN 0.252 0.225
11 AMGN 0.272 0.242
12 AMGN 0.257 0.21
13 AMGN 0.32 0.252
14 AMGN 0.336 0.259
15 AMGN 0.087 0.066
16 AMGN 0.353 0.585
select
ranges of columnsdrug_cos %>%
select(ebitdamargin:netmargin)
# A tibble: 104 x 3
ebitdamargin grossmargin netmargin
<dbl> <dbl> <dbl>
1 0.149 0.61 0.058
2 0.217 0.64 0.101
3 0.222 0.634 0.111
4 0.238 0.641 0.122
5 0.182 0.635 0.071
6 0.335 0.659 0.168
7 0.366 0.666 0.163
8 0.379 0.672 0.245
9 0.216 0.343 0.123
10 0.226 0.345 0.127
# ... with 94 more rows
drug_cos %>%
select(4:6)
# A tibble: 104 x 3
ebitdamargin grossmargin netmargin
<dbl> <dbl> <dbl>
1 0.149 0.61 0.058
2 0.217 0.64 0.101
3 0.222 0.634 0.111
4 0.238 0.641 0.122
5 0.182 0.635 0.071
6 0.335 0.659 0.168
7 0.366 0.666 0.163
8 0.379 0.672 0.245
9 0.216 0.343 0.123
10 0.226 0.345 0.127
# ... with 94 more rows
select
helper functions.starts_with("abc")
matches columns start with “abc”ends_with("abc")
matches columns end with “abc”contains("abc")
matches columns contain “abc”drug_cos %>%
select(ticker, contains("local"))
# A tibble: 104 x 1
ticker
<chr>
1 ZTS
2 ZTS
3 ZTS
4 ZTS
5 ZTS
6 ZTS
7 ZTS
8 ZTS
9 PRGO
10 PRGO
# ... with 94 more rows
drug_cos %>%
select(ticker, starts_with("r"))
# A tibble: 104 x 3
ticker ros roe
<chr> <dbl> <dbl>
1 ZTS 0.101 0.069
2 ZTS 0.171 0.113
3 ZTS 0.176 0.612
4 ZTS 0.195 0.465
5 ZTS 0.14 0.285
6 ZTS 0.286 0.587
7 ZTS 0.321 0.488
8 ZTS 0.326 0.694
9 PRGO 0.178 0.248
10 PRGO 0.183 0.236
# ... with 94 more rows
drug_cos %>%
select(ticker, ends_with("margin"))
# A tibble: 104 x 4
ticker ebitdamargin grossmargin netmargin
<chr> <dbl> <dbl> <dbl>
1 ZTS 0.149 0.61 0.058
2 ZTS 0.217 0.64 0.101
3 ZTS 0.222 0.634 0.111
4 ZTS 0.238 0.641 0.122
5 ZTS 0.182 0.635 0.071
6 ZTS 0.335 0.659 0.168
7 ZTS 0.366 0.666 0.163
8 ZTS 0.379 0.672 0.245
9 PRGO 0.216 0.343 0.123
10 PRGO 0.226 0.345 0.127
# ... with 94 more rows
group_by
to set up data for operations by groupgroup_by
drug_cos %>%
group_by(ticker)
# A tibble: 104 x 9
# Groups: ticker [13]
ticker name location ebitdamargin grossmargin netmargin ros
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 ZTS Zoet~ New Jer~ 0.149 0.61 0.058 0.101
2 ZTS Zoet~ New Jer~ 0.217 0.64 0.101 0.171
3 ZTS Zoet~ New Jer~ 0.222 0.634 0.111 0.176
4 ZTS Zoet~ New Jer~ 0.238 0.641 0.122 0.195
5 ZTS Zoet~ New Jer~ 0.182 0.635 0.071 0.14
6 ZTS Zoet~ New Jer~ 0.335 0.659 0.168 0.286
7 ZTS Zoet~ New Jer~ 0.366 0.666 0.163 0.321
8 ZTS Zoet~ New Jer~ 0.379 0.672 0.245 0.326
9 PRGO PERR~ Ireland 0.216 0.343 0.123 0.178
10 PRGO PERR~ Ireland 0.226 0.345 0.127 0.183
# ... with 94 more rows, and 2 more variables: roe <dbl>, year <dbl>
drug_cos %>%
group_by(year)
# A tibble: 104 x 9
# Groups: year [8]
ticker name location ebitdamargin grossmargin netmargin ros
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 ZTS Zoet~ New Jer~ 0.149 0.61 0.058 0.101
2 ZTS Zoet~ New Jer~ 0.217 0.64 0.101 0.171
3 ZTS Zoet~ New Jer~ 0.222 0.634 0.111 0.176
4 ZTS Zoet~ New Jer~ 0.238 0.641 0.122 0.195
5 ZTS Zoet~ New Jer~ 0.182 0.635 0.071 0.14
6 ZTS Zoet~ New Jer~ 0.335 0.659 0.168 0.286
7 ZTS Zoet~ New Jer~ 0.366 0.666 0.163 0.321
8 ZTS Zoet~ New Jer~ 0.379 0.672 0.245 0.326
9 PRGO PERR~ Ireland 0.216 0.343 0.123 0.178
10 PRGO PERR~ Ireland 0.226 0.345 0.127 0.183
# ... with 94 more rows, and 2 more variables: roe <dbl>, year <dbl>
summarize
to calculate summary statistics.roe
for all companies.drug_cos %>%
summarize(max_roe= max(roe))
# A tibble: 1 x 1
max_roe
<dbl>
1 1.31
roe
for each year
drug_cos %>%
group_by(year) %>%
summarize(max_roe= max(roe))
# A tibble: 8 x 2
year max_roe
* <dbl> <dbl>
1 2011 0.451
2 2012 0.69
3 2013 1.13
4 2014 0.828
5 2015 1.31
6 2016 1.11
7 2017 0.932
8 2018 0.694
roe
for each ticker
drug_cos %>%
group_by(ticker) %>%
summarize(max_roe= max(roe))
# A tibble: 13 x 2
ticker max_roe
* <chr> <dbl>
1 ABBV 1.31
2 AGN 0.184
3 AMGN 0.585
4 BIIB 0.334
5 BMY 0.373
6 GILD 1.04
7 JNJ 0.244
8 LLY 0.306
9 MRK 0.248
10 MYL 0.283
11 PFE 0.342
12 PRGO 0.248
13 ZTS 0.694
Mean for the year
mean_ros
# A tibble: 1 x 2
year mean_ros
<dbl> <dbl>
1 2013 0.227
Median for year - Find the median ros for each year and call the variable median_ros
- extract the median for 2013
# A tibble: 1 x 2
year median_ros
<dbl> <dbl>
1 2013 0.224
drug_cos %>%
filter(year==2018) %>%
ggplot(aes(x=netmargin, y=reorder(name, netmargin)))+
geom_col() +
scale_x_continuous(labels= scales::percent)+
labs(title= "Comparison of net margin",
subtitle = "For drug companies in 2018",
x=NULL, y=NULL)+
theme_classic()
ggsave(filename = "preview.png",
path= here::here("_posts", "2021-03-08-data-manipulation"))
drug_cos %>%
filter(ticker== "PFE") %>%
ggplot(aes(x= year, y= netmargin)) +
geom_col() +
scale_x_continuous(labels= scales::percent) +
labs(title = "Comparison of net margin",
subtitle = "For Pfizer from 2011 to 2018",
x=NULL, y=NULL) +
theme_classic()
ggsave(filename = "preview.png",
path= here::here("_posts", "2021-03-08-data-manipulation"))